28 research outputs found

    Towards a new ITU-T recommendation for subjective methods evaluating gaming QoE

    Get PDF
    This paper reports on activities in Study Group 12 of the International Telecommunication Union (ITU-T SG12) to define a new Recommendation on subjective evaluation methods for gaming Quality of Experience (QoE). It first resumes the structure and content of the current draft which has been proposed to ITU-T SG12 in September 2014 and then critically discusses potential gaming content and evaluation methods for inclusion into the upcoming Recommendation. The aim is to start a discussion amongst experts on potential evaluation methods and their limitations, before finalizing a Recommendation. Such a recommendation might in the end be applied by non -expert users, hence wrong decisions in the evaluation design could negatively affect gaming QoE throughout the evaluation

    Real-time affect detection in virtual reality: a technique based on a three-dimensional model of affect and EEG signals

    Get PDF
    This manuscript explores the development of a technique for detecting the affective states of Virtual Reality (VR) users in real-time. The technique was tested with data from an experiment where 18 participants observed 16 videos with emotional content inside a VR home theater, while their electroencephalography (EEG) signals were recorded. Participants evaluated their affective response toward the videos in terms of a three-dimensional model of affect. Two variants of the technique were analyzed. The difference between both variants was the method used for feature selection. In the first variant, features extracted from the EEG signals were selected using Linear Mixed-Effects (LME) models. In the second variant, features were selected using Recursive Feature Elimination with Cross Validation (RFECV). Random forest was used in both variants to build the classification models. Accuracy, precision, recall and F1 scores were obtained by cross-validation. An ANOVA was conducted to compare the accuracy of the models built in each variant. The results indicate that the feature selection method does not have a significant effect on the accuracy of the classification models. Therefore, both variations (LME and RFECV) seem equally reliable for detecting affective states of VR users. The mean accuracy of the classification models was between 87% and 93%

    Working With Environmental Noise and Noise-Cancelation: A Workload Assessment With EEG and Subjective Measures

    Get PDF
    As working and learning environments become open and flexible, people are also potentially surrounded by ambient noise, which causes an increase in mental workload. The present study uses electroencephalogram (EEG) and subjective measures to investigate if noise-canceling technologies can fade out external distractions and free up mental resources. Therefore, participants had to solve spoken arithmetic tasks that were read out via headphones in three sound environments: a quiet environment (no noise), a noisy environment (noise), and a noisy environment but with active noise-canceling headphones (noise-canceling). Our results of brain activity partially confirm an assumed lower mental load in no noise and noise-canceling compared to noise test condition. The mean P300 activation at Cz resulted in a significant differentiation between the no noise and the other two test conditions. Subjective data indicate an improved situation for the participants when using the noise-canceling technology compared to “normal” headphones but shows no significant discrimination. The present results provide a foundation for further investigations into the relationship between noise-canceling technology and mental workload. Additionally, we give recommendations for an adaptation of the test design for future studies
    corecore